Ordonnancement multicoeurs optimisé de chaînes sur AFF3CT

Diane ORHAN diane.orhan@inria.fr

28th November 2023

Starting point

- 1 filter = 1 task/bloc implemented (AFF3CT)
- How to split the computation for a given architecture while having good performances ?
- For now: done manually by the user

Main issue

For a given multi-core architecture, with identical and homogeneous resources, **automatically** partition radio chain.

Objectives:

- 1. Maximize frame processing throughput
- 2. Minimize use of resources

What does it mean ?

- 1. Automatic parallelization of a task chain
- 2. Automatic parallelization of **several task chain** on the same architecture
- 3. Automatic parallelization of a DAG

What about GNU Radio ?

- For now:
 - Version 3.0
 - Thread Per Block (task) Scheduling
 - Thread management by the OS/runtime
- Future development:
 - Version 4.0
 - Allow more than one block per thread
 - Could use OTAC

State of the art: Pipeline workflow scheduling

• Task parallelism

•

• Data parallelism

1 data

Anne Benoit, Ümit V. Çatalyürek, Yves Robert, and Erik Saule. 2013. A Survey of Pipelined Workflow Scheduling: Models and Algorithms. ACM Comput. Surv. 45, 4, Article 50 (aug 2013), 36 pages. <u>https://doi.org/10.1145/2501654.2501664</u>

Parallelization operations available

Pipeline

Pipeline user description

Parallelization operations available

- *N* : number of tasks in the chain
- *P* : number of available resources
- w_i : weight of a task τ_i

→ Find optimal partitioning in terms of throughput for a given P

- N : number of tasks in the chain
- *P* : number of available resources
- w_i : weight of a task τ_i
- $s_i: i^e$ stage
- p_i : number of resources dedicated to s_i

 \rightarrow Find optimal partitioning in terms of throughput for a given P

- N : number of tasks in the chain
- *P* : number of available resources
- w_i : weight of a task τ_i
- $s_i: i^e$ stage
- p_i : number of resources dedicated to s_i
- Weight of the i^e stage : $w(s_i, p_i) = \begin{cases} \sum_{\tau \in s_i} w_i & \text{if } s_i \text{ stateful, } p_i \ge 1 \\ \frac{1}{p_i} \sum_{\tau \in s_i} w_i & \text{if } s_i \text{ stateless, } p_i \ge 1 \\ \infty & \text{otherwise} \end{cases}$

 \rightarrow Find optimal partitioning in terms of throughput for a given P

- N : number of tasks in the chain
- *P* : number of available resources
- w_i : weight of a task τ_i
- $s_i: i^e$ stage
- p_i : number of resources dedicated to s_i
- Weight of the i^e stage : $w(s_i, p_i) = \begin{cases} \sum_{\tau \in s_i} w_i & \text{if } s_i \text{ stateful, } p_i \ge 1 \\ \frac{1}{p_i} \sum_{\tau \in s_i} w_i & \text{if } s_i \text{ stateless, } p_i \stackrel{=}{:} 1 \\ \infty & \text{otherwise} \end{cases}$
- $T^{1=} \max_{i} w(s_i, p_i)$: the longest stage duration

 \rightarrow Find optimal partitioning in terms of throughput for a given P

OTAC: **Optimal** maximal-packing for TAsk Chains

Goals :

- 1. Maximize the throughput i.e. **minimize T**⁻¹, the largest stage pipeline weight **automatically**
- 2. Minimize the number of used resources

Hypothesis :

- Identical and homogeneous resources
- No synchronization or data movement overhead

Proof of optimality: see OTAC: Optimal Scheduling for Pipelined and Replicated Task Chains for Software-Defined Radio, Orhan, Lima Pilla, Barthou, Cassagne, Aumage, Tajan, Jego, Leroux <u>https://hal.science/hal-04228117</u>

11

OTAC Algorithm

Two functions:

- PROBE
 - Find if, solution with target T⁻¹ and P resources, is feasible

• SOLVE

 Use PROBE and with a binary research on T⁻¹ find the best one

4	Algorithm 2: $SOLVE(N, P)$
	Result: Minimal reciprocal throughput T^{-1}
1	$T_{\min}^{-1} \leftarrow \frac{1}{P} \sum_{\tau \in \mathcal{T}} w_{\tau};$
2	$T_{\max}^{-1} \leftarrow T_{\min}^{-1} + \max_{\tau \in \mathcal{T}} w_{\tau};$
3	while $T_{\max}^{-1} - T_{\min}^{-1} \ge \frac{1}{P}$ do
4	$T_{\rm mid}^{-1} \leftarrow \frac{T_{\rm max}^{-1} + T_{\rm min}^{-1}}{2};$
5	done, T_{mid}^{-1} , P , $(\mathbf{n}, \mathbf{p}) \leftarrow \text{PROBE}(T_{\text{mid}}^{-1})$; /* <i>TRUE</i>
	if a valid solution is found */
6	if done then
7	$ T_{\text{max}}^{-1} \leftarrow T_{\text{mid}}^{-1}; /* T^{-1} \text{ can only get smaller */}$
8	else
9	$ T_{\min}^{-1} \leftarrow T_{\min}^{-1}; /* T^{-1} can only get bigger */$
10	end
11	end
12	$T^{-1} \leftarrow T_{\max}^{-1};$

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all partition T⁻¹.

N=9,

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Ρ									
W									

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

1

N=9,

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Р									
W	l	<i>W</i> seq,1 = 12							

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

N=9,

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Ρ	Ĭ	0 1=[Wseq,	1 /T ⁻¹]						
W	1	L2/3 = 4							

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

N=9,

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Ρ		3							
W		4							

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

N=9,

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Ρ		3 (2)	?						
W		4							

OTAC Algorithm

н

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

Ρ	=	7
	_	

1 = /									
Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Ρ		3 (2)	?						
W		4 (4.5)							
					1	1	1	1	1

OTAC Algorithm

 $\Gamma^{-1} = 5$

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all partition T⁻¹.

N=9,	
D-7	

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Ρ	2								
W	4.5								

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

P=7						1			
Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Р		2	:	1					
W	4.5		4						
	1					1	1	1	1

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all partition T⁻¹.

N=9 <i>,</i> P=7	$T^{-1}=5$		1		I				
Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Р	2		1		1				
W	4.5		4		4				
								1	1

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

P=7				1					
Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Р		2	-	L		1	1	L	
W	4	.5		1		4	5	5	
L	1								

OTAC Algorithm

T⁻¹= 5

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all <u>partition</u> T⁻¹.

P=7									
Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Р		2	-	L		1	1	L	2
W	4	.5		1	4	4	Ę	5	3
L	1								

OTAC algorithm

Find at most P-1 partitions, using **pipeline** and/or **replication** parallelism, minimizing the maximum sum of weight in all partition T⁻¹.

N=9, P=7	T ⁻¹ = 5		I		I		1		1	
Index	0	1	2	3	4	5	6	7	8	
State	SL	SL	SL	SF	SL	SL	SF	SL	SL	
Α	4	5	3	1	3	1	2	3	6	
Р		2		1		1		1	2	P used:
W	4	.5		4		4		5	3	

OTAC Algorithm

Binary search: find the best T⁻¹ for P=7 Lower Bound = [28/7] = 4Upper Bound = LB + 6 = 10

Index	0	1	2	3	4	5	6	7	8	
State	SL	SL	SL	SF	SL	SL	SF	SL	SL	-
Α	4	5	3	1	3	1	2	3	6	<u>Total :</u> 28

OTAC Algorithm

Binary search: find the best T⁻¹ for P=7 Lower Bound = [28/7] = 4Upper Bound = LB + 6 = 10 T⁻¹ = (LB+UB)/2 = 7

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6

OTAC Algorithm

T⁻¹=7

Binary search: find the best T⁻¹ for P=7 Lower Bound = [28/7] = 4Upper Bound = LB + 6 = 10 T⁻¹ = (LB+UB)/2 = 7

	Index	0	1	2	3	4	5	6	7	8	
	State	SL	SL	SL	SF	SL	SL	SF	SL	SL	
	Α	4	5	3	1	3	1	2	3	6	<u>P Total</u>
-	Ρ		2				1	•		2	5 🗸

29

OTAC Algorithm

Binary search: find the best T⁻¹ for P=7 Lower Bound = 4 Upper Bound = 7 $T^{-1} = (LB+UB)/2 = 5.5$

	Index	0	1	2	3	4	5	6	7	8	
	State	SL	SL	SL	SF	SL	SL	SF	SL	SL	
	Α	4	5	3	1	3	1	2	3	6	<u>P Total</u>
T ⁻¹ =7	Р		3				1			2	6 🗸

OTAC Algorithm

Binary search: find the best T⁻¹ for P=7 Lower Bound = 4 Upper Bound = 7 $T^{-1} = (LB+UB)/2 = 5.5$

									1	
T ⁻¹ =7	Р		3				1			2
	A	4	5	3	1	3	1	2	3	6
	State	SL	SL	SL	SF	SL	SL	SF	SL	SL
	Index	0	1	2	3	4	5	6	7	8

30

OTAC Algorithm

Binary search: find the best T⁻¹ for P=7 Lower Bound = 4 Upper Bound = 5.5 $T^{-1} = (LB+$

T⁻¹ = (LB+UB)/2 = 4.75

1		1									
	Index	0	1	2	3	4	5	6	7	8	
	State	SL	SL	SL	SF	SL	SL	SF	SL	SL	
	Α	4	5	3	1	3	1	2	3	6	<u>P Total :</u>
T ⁻¹ =7	Ρ		3			, , ,	1			2	6
T ⁻¹ =5.5	Р		3			1			1	2	7 🗸

OTAC Algorithm

Binary search: find the best T⁻¹ for P=7 Lower Bound = 4 Upper Bound = 5.5 $T^{-1} = (LB+$

 $T^{-1} = (LB + UB)/2 = 4.75$

	Index	0	1	2	3	4	5	6	7	8	
	State	SL	SL	SL	SF	SL	SL	SF	SL	SL	
	Α	4	5	3	1	3	1	2	3	6	<u>P Total :</u>
T ⁻¹ =7	Ρ		3	•			1	•		2	6 🗸
T ⁻¹ =5.5	Р		3			1			L	2	7 🗸

OTAC Algorithm

Binary search: find the best T⁻¹ for P=7 Lower Bound = 4 Upper Bound = 5.5 $T^{-1} = (LB+$

 $- T^{-1} = (LB + UB)/2 = 4.75$

			i i i i i i i i i i i i i i i i i i i	1	1		1	1	1
Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Р		3				1			2
5 P		3			1			1	2
′5 P		4			1		1		2

OTAC Algorithm

 $- T^{-1} = (LB+UB)/2 = 5.125$

Index	0	1	2	3	4	5	6	7	8
State	SL	SL	SL	SF	SL	SL	SF	SL	SL
Α	4	5	3	1	3	1	2	3	6
Р		3	1			1	1		2
Р		3			1			1	2
Р		4			1		1		2

OTAC Algorithm

T⁻¹ = (LB+UB)/2 = 5.125

											-
	Index	0	1	2	3	4	5	6	7	8	
-	State	SL	SL	SL	SF	SL	SL	SF	SL	SL	
-	Α	4	5	3	1	3	1	2	3	6	<u>P Total :</u>
T ⁻¹ =7	Ρ	3					1			2	6
T ⁻¹ =5.5	Р	3			1			1		2	7 🗸
T ⁻¹ =4.75	Ρ	4			1			1 2		2	8 🗙
T ⁻¹ =5	Р		2		1		1		1	2 3	5 7 🗸
L											_

OTAC Algorithm

Binary search: find the best T^{-1} for P=7

Lower Bound = 4.75 Upper Bound = 5.125

UB-LB = 0.375 < 1 with non-integer values < 1/P

Index	0	1	2	3	4	5	6	7	8	
State	SL	SL	SL	SF	SL	SL	SF	SL	SL	-
Α	4	5	3	1	3	1	2	3	6	<u>P Total :</u>
Ρ		3	1	1			1		2	6 🗸
Ρ	3			1			1		2	7 🗸
Ρ	4			1			1 2		2	8 🗙
Ρ		2	-	1		1	1	1	2 36	7 🗸
	Index State A P P P P	Index0StateSLA4P-P-P-P-P-P-P-P-	Index 0 1 State SL SL A 4 5 P 3 3 P 3 4 P 4 5 P 3 4 P 4 5 P 2 4	Index 0 1 2 State SL SL SL A 4 5 3 P 3 3 3 P 3 3 3 P 4 5 5 P 3 3 3 P 4 5 5 P 2 4 5 P 2 4 5	Index 0 1 2 3 State SL SL SF A 4 5 3 1 P 3 3 1 1 P 3 3 1 1 P 3 3 1 1 P 3 3 1 1 P 3 3 1 1 P 3 3 1 1 P 3 3 1 1 P 3 3 1 1 P 4 3 1 1	Index 0 1 2 3 4 State SL SL SF SL A 4 5 3 1 3 P 3 3 1 3 1 P 3 4 1 1 1 P 3 4 1 1 1 P 4 4 1 1 1 P 2 4 1 1 1 P 2 1 1 1 1	Index 0 1 2 3 4 5 State SL SL SL SF SL SL A 4 5 3 1 3 1 P \cdot \cdot \cdot \cdot \cdot \cdot \cdot P \cdot	Index 0 1 2 3 4 5 6 State SL SL SL SL SL SL SF A 4 5 3 1 3 1 2 P 3 3 1 3 1 2 1 2 P 3 3 1 3 1 2 1 2 P 3 3 1 1 1 1 1 2 P 4 3 4 5 1 1 1 1 P 4 2 1 1 1 1 1 1 P 2 1 1 1 1 1 1 1 P 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Index01234567StateSLSLSLSFSLSFSLA45313123P 3 3 1 3 123P 3 3 1 1 1 1 1 P 3 3 1 1 1 1 1 P 4 3 1 1 1 1 1 P 4 4 1 1 1 1 1 P 2 4 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

OTAC Algorithm

Binary search: find the best T^{-1} for P=7

Lower Bound = 4.75 Upper Bound = 5.125

UB-LB = 0.375 < 1 with non-integer values < 1/P

										<u> </u>
	8	7	6	5	4	3	2	1	0	Index
	SL	SL	SF	SL	SL	SF	SL	SL	SL	State
<u>P Total</u>	6	3	2	1	3	1	3	5	4	Α
7 🗸	2	1		1		1		2		Р
	3	5		4		4		4.5		W

For this specific problem with P=7, $T^{-1}=5$

Evaluation

- 1. Synthetic chains
- 2. Concrete use-case: DVB-S2

Evaluation: synthetic chains

Workload:

- 1000 randomly generated chains
- 20 tasks each
- Computational time [100,35000] μs
- Stateless ratio $SR \in [0, 1]$

Variation of SR from 0 to 1 with step 0.1 P = {5, 10, 15, 25}

Evaluation: synthetic chains

Comparison to other algorithms ?

- Nicol: optimal algorithm for pipelining only
- **RB**: recursived-bipartitioning-based scheduler
- **RBm**: as RB + merge neighboring stateless stages together
- **RPT**: one resources per task, if N>P, fuses stages together
- **RPTm**: as RPT + merge neighboring stateless stages together

Evaluation: synthetic chains

Comparison to other algorithms ?

- Nicol: optimal algorithm for pipelining only
- **RB**: recursived-bipartitioning-based scheduler
- RBm: as RB + merge neighboring stateless stages together
- **RPT**: one resources per task, if N>P, fuses stages together
- **RPTm**: as RPT + merge neighboring stateless stages together

Number of solutions of different qualities for different schedulers, numbers of processors, and stateless ratios compared to OTAC.

P=15

Stateless ratio

Stateless ratio

- **Optimal**: maximum throughput with minimum number of resources.
- **Excess**: maximum throughput with extra resources.
- Suboptimal: suboptimal throughput.

Simulation: histograms of number of resources used (P)

Schedules computed by:

- OTAC
- RBm
- Nicol

Configurations:

- Left: P = 20 and SR = 0.5
- Right: P = 20 and SR = 0.9

Evaluation: concrete use case DVB-S2

Hardware & Software environment

- 2 x 18 Intel Xeon Skylake, 3.2 GHz
- No hyperthreading
- AFF3CT v3.0.2
- gcc v12.2.0 Python v3.8.0
- Threads pinned onto core with hwloc v2.7

DVB-S2 configuration

- Satellite transmission of video contents
- Reception chain at transmission time
- Frame packet of 16 frames
- 1.28 GB decoded by execution
- Noise 4 dB

Evaluation: concrete use case DVB-S2

	Simulated T	T average	Р
ΟΤΑϹ	47.17	43.86	18
RPTm	26.21	25.26	18
RBm	47.17	43.98	25
Nicol	6.66	6.58	4
Baseline	47.17	42.3	35

Simulated and average throughput, number of resources needed for the best results achieved

Conclusion

Summary:

• Optimal algorithm maximizing throughput and minimizing resources

On-going:

• Automatic parallelization of several task chain on the same architecture

To go further:

- Manage more complex graphs (loop, condition, DAG)
- Is it transferable for neural network training ? => internship
- On-the-fly noise variation