
AFF3CT Runtime × – New Features & Roadmap
2nd AFF3CT User Day

Adrien Cassagne†, Maxime Millet†, Julien Sopena† and Alix Munier†

†Sorbonne University, LIP6, CNRS, Paris, France

November 28, 2023

mailto:adrien.cassagne@lip6.fr
mailto:maxime.millet@lip6.fr
mailto:julien.sopena@lip6.fr
mailto:alix.munier@lip6.fr

Table of Contents
1 Introduction

▶ Introduction

▶ New Features

▶ Roadmap

▶ Conclusion

Remainder of Previous AFF3CT User Days
1 Introduction

• AFF3CT split into 3 open source projects (MIT license)
— AFF3CT1: Library & simulator for error correcting codes

◦ GitHub: 426 ⋆ – 135 forks – 90k lines of code

— AFF3CT-core2: Dataflow DSEL & multi-threaded runtime
◦ GitHub: 1 ⋆ – 2 forks – 20k lines of code

— MIPP3: Portability & expressiveness for CPU SIMD instructions
◦ GitHub: 440 ⋆ – 85 forks – 30k lines of code

1A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Leroux, R. Tajan, O. Aumage, D. Barthou,
T. Tonnellier, V. Pignoly, B. Le Gal, and C. Jégo. “AFF3CT: A Fast Forward Error Correction Toolbox!” In:
Elsevier SoftwareX 10 (Oct. 2019), p. 100345. doi: 10.1016/j.softx.2019.100345.

2A. Cassagne, R. Tajan, O. Aumage, D. Barthou, C. Leroux, and C. Jégo. “A DSEL for High Throughput and
Low Latency Software-Defined Radio on Multicore CPUs”. In: Wiley Concurrency and Computation: Practice
and Experience (CCPE) 35.23 (July 2023), e7820. doi: 10.1002/cpe.7820.

3A. Cassagne, O. Aumage, D. Barthou, C. Leroux, and C. Jégo. “MIPP: A Portable C++ SIMD Wrapper and
its use for Error Correction Coding in 5G Standard”. In: Workshop on Programming Models for SIMD/Vector
Processing (WPMVP). Vösendorf/Wien, Austria: ACM, Feb. 2018. doi: 10.1145/3178433.3178435.

1/14

https://doi.org/10.1016/j.softx.2019.100345
https://doi.org/10.1002/cpe.7820
https://doi.org/10.1145/3178433.3178435

Main Purposes of this Talk
1 Introduction

1 Give you an overview of the recently introduced features

2 Talk about what is next: special focus on AFF3CT-core and

3 Discuss with you about the directions to take

2/14

Table of Contents
2 New Features

▶ Introduction

▶ New Features

▶ Roadmap

▶ Conclusion

Single Instruction Multiple Data with MIPP
2 New Features

• MIPP enables
— Efficient implementations
— Portability over the most common architectures
— Code readability compared to intrinsic functions

• New features
— Unsigned integers support (relevant for some signal processing algorithms)
— Partial support of SVE

◦ SVE Length Specific
◦ Most common operations for floating-point numbers
◦ SIMD ISA in ARMv9 and in Fujitsu A64FX CPUs (in Fugaku, the World n°2 Supercomputer)

— Working on a code generator (L. Dendani’s 6 months internship @ IFPEN)

• Collaborations
— IFP Energies Nouvelles (IFPEN)
— Inria Bordeaux

◦ Open position for a 6 months internship → Code generation, SVE & RVV

3/14

MIPP MIPP!

Single Instruction Multiple Data with MIPP
2 New Features

• MIPP enables
— Efficient implementations
— Portability over the most common architectures
— Code readability compared to intrinsic functions

• New features
— Unsigned integers support (relevant for some signal processing algorithms)
— Partial support of SVE

◦ SVE Length Specific
◦ Most common operations for floating-point numbers
◦ SIMD ISA in ARMv9 and in Fujitsu A64FX CPUs (in Fugaku, the World n°2 Supercomputer)

— Working on a code generator (L. Dendani’s 6 months internship @ IFPEN)

• Collaborations
— IFP Energies Nouvelles (IFPEN)
— Inria Bordeaux

◦ Open position for a 6 months internship → Code generation, SVE & RVV

3/14

MIPP MIPP!

Single Instruction Multiple Data with MIPP
2 New Features

• MIPP enables
— Efficient implementations
— Portability over the most common architectures
— Code readability compared to intrinsic functions

• New features
— Unsigned integers support (relevant for some signal processing algorithms)
— Partial support of SVE

◦ SVE Length Specific
◦ Most common operations for floating-point numbers
◦ SIMD ISA in ARMv9 and in Fujitsu A64FX CPUs (in Fugaku, the World n°2 Supercomputer)

— Working on a code generator (L. Dendani’s 6 months internship @ IFPEN)

• Collaborations
— IFP Energies Nouvelles (IFPEN)
— Inria Bordeaux

◦ Open position for a 6 months internship → Code generation, SVE & RVV

3/14

MIPP MIPP!

AFF3CT-core for Streaming Applications
2 New Features

“At the creation of the Universe, AFF3CT & AFF3CT-core was a single project.”

• AFF3CT-core has been extracted from AFF3CT as is it no longer
specific to digital communications

— Still, AFF3CT-core is a strong dependency in AFF3CT
— Enable to work in an asynchronous way on both projects

• A DSEL and a runtime to support a large range of applications
— Digital communications: DVB-S2 transceiver, DVB-RCS2 transceiver, ...
— Computer vision: real-time meteor detection systems
— Post-quantum cryptography: on going work of Andrea Lesavourey
— DNN inference: Enrique Galvez’s 6 months internship starting February’24

(co-supervised with Alix Munier @ LIP6)
: Streaming applications!

4/14

AFF3CT-core for Streaming Applications
2 New Features

“At the creation of the Universe, AFF3CT & AFF3CT-core was a single project.”

• AFF3CT-core has been extracted from AFF3CT as is it no longer
specific to digital communications

— Still, AFF3CT-core is a strong dependency in AFF3CT
— Enable to work in an asynchronous way on both projects

• A DSEL and a runtime to support a large range of applications
— Digital communications: DVB-S2 transceiver, DVB-RCS2 transceiver, ...
— Computer vision: real-time meteor detection systems
— Post-quantum cryptography: on going work of Andrea Lesavourey
— DNN inference: Enrique Galvez’s 6 months internship starting February’24

(co-supervised with Alix Munier @ LIP6)
: Streaming applications!

4/14

AFF3CT-core – Definitions
2 New Features

t1 t2 t3 t4

M1 M2 M3 M4

Sequence

Task Output socket
Input socket

t1

t2

t3

t4

t5

t6

M1

M2

M3

M4

M5

Sequence

• Directed graphs are supported to map a wide range of apps
• A sequence is built from an initial and a final list of tasks
• Tasks execution order (scheduling) is determined by the user binding
• States are contained in modules (= C++ classes)
• One task execution is enough to run dependent tasks (single rate SDF)

5/14

AFF3CT-core – Definitions
2 New Features

t1 t2 t3 t4

M1 M2 M3 M4

Sequence

Task Output socket
Input socket

t1

t2

t3

t4

t5

t6

M1

M2

M3

M4

M5

Sequence

• Directed graphs are supported to map a wide range of apps

• A sequence is built from an initial and a final list of tasks
• Tasks execution order (scheduling) is determined by the user binding
• States are contained in modules (= C++ classes)
• One task execution is enough to run dependent tasks (single rate SDF)

5/14

AFF3CT-core – Definitions
2 New Features

t1 t2 t3 t4

M1 M2 M3 M4

Sequence

Task Output socket
Input socket

t1

t2

t3

t4

t5

t6

M1

M2

M3

M4

M5

Sequence

• Directed graphs are supported to map a wide range of apps
• A sequence is built from an initial and a final list of tasks

• Tasks execution order (scheduling) is determined by the user binding
• States are contained in modules (= C++ classes)
• One task execution is enough to run dependent tasks (single rate SDF)

5/14

AFF3CT-core – Definitions
2 New Features

t1 t2 t3 t4

M1 M2 M3 M4

Sequence

Task Output socket
Input socket

t1

t2

t3

t4

t5

t6

M1

M2

M3

M4

M5

Sequence

• Directed graphs are supported to map a wide range of apps
• A sequence is built from an initial and a final list of tasks
• Tasks execution order (scheduling) is determined by the user binding

• States are contained in modules (= C++ classes)
• One task execution is enough to run dependent tasks (single rate SDF)

5/14

AFF3CT-core – Definitions
2 New Features

t1 t2 t3 t4

Sequence

Task
Module

Output socket
Input socket

M1 M2 M3 M4

t1

t2

t3

t4

t5

t6

Sequence

M1

M2

M3

M4

M5

• Directed graphs are supported to map a wide range of apps
• A sequence is built from an initial and a final list of tasks
• Tasks execution order (scheduling) is determined by the user binding
• States are contained in modules (= C++ classes)

• One task execution is enough to run dependent tasks (single rate SDF)

5/14

AFF3CT-core – Definitions
2 New Features

t1 t2 t3 t4

Sequence

Task
Module

Output socket
Input socket

M1 M2 M3 M4

t1

t2

t3

t4

t5

t6

Sequence

M1

M2

M3

M4

M5

• Directed graphs are supported to map a wide range of apps
• A sequence is built from an initial and a final list of tasks
• Tasks execution order (scheduling) is determined by the user binding
• States are contained in modules (= C++ classes)
• One task execution is enough to run dependent tasks (single rate SDF)

5/14

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3[?, ?, ?, ?] [?, ?, ?, ?]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3[?, ?, ?, ?]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!

6/14

aaaa

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3]

[0, 1, 2, 3] [?, ?, ?, ?]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3[?, ?, ?, ?]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!

6/14

aaaa

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3] [0, 9, 2, 3]

[0, 1, 2, 3] [0, 9, 2, 3]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3[?, ?, ?, ?]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!

6/14

aaaa

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3] [0, 9, 2, 3]

[0, 1, 2, 3] [0, 9, 2, 3]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3[?, ?, ?, ?]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!

6/14

aaaa

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3] [0, 9, 2, 3]

[0, 1, 2, 3] [0, 9, 2, 3]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3[?, ?, ?, ?]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!

6/14

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3] [0, 9, 2, 3]

[0, 1, 2, 3] [0, 9, 2, 3]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3]

[0, 1, 2, 3]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!

6/14

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3] [0, 9, 2, 3]

[0, 1, 2, 3] [0, 9, 2, 3]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3

[0, 9, 2, 3] [0, 9, 2, 3]

[0, 9, 2, 3]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!

6/14

AFF3CT-core – Forward Socket – Presentation
2 New Features

t1 t2 t3

M1 M2 M3

[0, 1, 2, 3] [0, 9, 2, 3]

[0, 1, 2, 3] [0, 9, 2, 3]

Sequence

• Data are automatically allocated in the
output sockets (see gray rectangles)

• Let’s assume that t2 only modify the
second value of its input socket

— “0”, “2” and “3” are copied into t2
output socket and “9” value replaces “1”

— This is highly inefficient!

t1 t2 t3

M1 M2 M3

[0, 9, 2, 3] [0, 9, 2, 3]

[0, 9, 2, 3]

Sequence

• Forward socket: at the same time an
input and output socket (read+write)

— There is NO data allocation

• We propose a new implementation of t2
with a forward socket

— t1 output socket is modified in-place
(“1” becomes “9”)

— This is efficient and cache-friendly!
6/14

AFF3CT-core – Forward Socket – Summary
2 New Features

• New concept recently added to AFF3CT-core
— Master 1 project with two students (Yacine Idouar & Nourdinne Hammachi)
— Yacine Idouar’s Master 1 internship (June to July’23)
— Co-supervised with Julien Sopena @ LIP6

• Operate in parallel contexts across pipeline stages & sequence replications

• Continuous integration over extensive unitary testing & documentation

• Proven to work on a “real project”: ×2 speedup for meteor detection

7/14

AFF3CT-core – Control Flow & Pipeline
2 New Features

• Dynamic control flow
— Not common in dataflow DSL
— Also known as feedback loop

◦ Still, in the DSEL it is more generic as
dynamic conditions and switch-cases are
also supported

— Useful in many cases
◦ Digital communications: turbo demodulation
◦ Computer vision: iterative optical flow
◦ DNN: feedback graphs
◦ And so on

— Avoid unnecessary unrolling
◦ Can be seen as a compression

— Enable dynamic early exit
◦ New optimization opportunities
◦ Static graph but dynamic path

• New features
— Control flow inside a pipeline stage

◦ Tested in continuous integration of
comprehensive cases

◦ Documented

— Improved error management
◦ Control flow must be within a stage
◦ Error message if the data binding is wrong

— Master 1 internship (2 months)
◦ Nourdinne Hammachi
◦ Co-supervised with Julien Sopena @ LIP6

• Still some limitations
— A pipeline stage cannot start or end with

a Switcher task (select or commute)
— relay task can overcome this issue

◦ At the cost of a useless copy...

8/14

AFF3CT-core – Control Flow & Pipeline
2 New Features

• Dynamic control flow
— Not common in dataflow DSL
— Also known as feedback loop

◦ Still, in the DSEL it is more generic as
dynamic conditions and switch-cases are
also supported

— Useful in many cases
◦ Digital communications: turbo demodulation
◦ Computer vision: iterative optical flow
◦ DNN: feedback graphs
◦ And so on

— Avoid unnecessary unrolling
◦ Can be seen as a compression

— Enable dynamic early exit
◦ New optimization opportunities
◦ Static graph but dynamic path

• New features
— Control flow inside a pipeline stage

◦ Tested in continuous integration of
comprehensive cases

◦ Documented

— Improved error management
◦ Control flow must be within a stage
◦ Error message if the data binding is wrong

— Master 1 internship (2 months)
◦ Nourdinne Hammachi
◦ Co-supervised with Julien Sopena @ LIP6

• Still some limitations
— A pipeline stage cannot start or end with

a Switcher task (select or commute)
— relay task can overcome this issue

◦ At the cost of a useless copy...
8/14

AFF3CT-core – Miscellaneous
2 New Features

• 2D socket
— Memory is still allocated in a contiguous way
— But an additional row buffer is allocated for

the 2nd dimension in the socket
— Addressed in the previous buffer need to be

recomputed each time a task is triggered
— 3D socket is considered in the future

• Task to task binding
— Allow to specify dependencies between

tasks more precisely
— Required in some cases

◦ Non-explicit dependencies (= not described through
sockets binding)

◦ Forward socket can change the data of an output
socket ⇒ the execution order can modify final result

9/14

1 Stateless foo(); // create a module
2 Task &t = foo.create_tsk("bar"); // create a task
3 // create a 2D socket (8 rows and 8 cols = 64 elmts)
4 size_t si = foo.create_2d_sck_in<int>(t, "in", 8, 8);
5 // code to execute when the 'bar' task is called
6 foo.create_codelet(t, [si](Module &m, Task &tsk) {
7 // get a input 2D data pointer
8 const int** img =
9 tsk[si].get_2d_dataptr<const int>();

10 volatile int sum = 0;
11 for (size_t y = 0; y < 8; y++)
12 for (size_t x = 0; x < 8; x++)
13 sum += img[y][x];
14 return status_t::SUCCESS;
15 });

AFF3CT-core – Miscellaneous
2 New Features

• 2D socket
— Memory is still allocated in a contiguous way
— But an additional row buffer is allocated for

the 2nd dimension in the socket
— Addressed in the previous buffer need to be

recomputed each time a task is triggered
— 3D socket is considered in the future

• Task to task binding
— Allow to specify dependencies between

tasks more precisely
— Required in some cases

◦ Non-explicit dependencies (= not described through
sockets binding)

◦ Forward socket can change the data of an output
socket ⇒ the execution order can modify final result

9/14

1 Stateless foo(); // create a module
2 Task &t = foo.create_tsk("bar"); // create a task
3 // create a 2D socket (8 rows and 8 cols = 64 elmts)
4 size_t si = foo.create_2d_sck_in<int>(t, "in", 8, 8);
5 // code to execute when the 'bar' task is called
6 foo.create_codelet(t, [si](Module &m, Task &tsk) {
7 // get a input 2D data pointer
8 const int** img =
9 tsk[si].get_2d_dataptr<const int>();

10 volatile int sum = 0;
11 for (size_t y = 0; y < 8; y++)
12 for (size_t x = 0; x < 8; x++)
13 sum += img[y][x];
14 return status_t::SUCCESS;
15 });

t1

t2

t4

t3

AFF3CT-core – Miscellaneous
2 New Features

• 2D socket
— Memory is still allocated in a contiguous way
— But an additional row buffer is allocated for

the 2nd dimension in the socket
— Addressed in the previous buffer need to be

recomputed each time a task is triggered
— 3D socket is considered in the future

• Task to task binding
— Allow to specify dependencies between

tasks more precisely
— Required in some cases

◦ Non-explicit dependencies (= not described through
sockets binding)

◦ Forward socket can change the data of an output
socket ⇒ the execution order can modify final result

9/14

1 Stateless foo(); // create a module
2 Task &t = foo.create_tsk("bar"); // create a task
3 // create a 2D socket (8 rows and 8 cols = 64 elmts)
4 size_t si = foo.create_2d_sck_in<int>(t, "in", 8, 8);
5 // code to execute when the 'bar' task is called
6 foo.create_codelet(t, [si](Module &m, Task &tsk) {
7 // get a input 2D data pointer
8 const int** img =
9 tsk[si].get_2d_dataptr<const int>();

10 volatile int sum = 0;
11 for (size_t y = 0; y < 8; y++)
12 for (size_t x = 0; x < 8; x++)
13 sum += img[y][x];
14 return status_t::SUCCESS;
15 });

t1

t2

t4

t3

AFF3CT-core – Miscellaneous
2 New Features

• 2D socket
— Memory is still allocated in a contiguous way
— But an additional row buffer is allocated for

the 2nd dimension in the socket
— Addressed in the previous buffer need to be

recomputed each time a task is triggered
— 3D socket is considered in the future

• Task to task binding
— Allow to specify dependencies between

tasks more precisely
— Required in some cases

◦ Non-explicit dependencies (= not described through
sockets binding)

◦ Forward socket can change the data of an output
socket ⇒ the execution order can modify final result

9/14

1 Stateless foo(); // create a module
2 Task &t = foo.create_tsk("bar"); // create a task
3 // create a 2D socket (8 rows and 8 cols = 64 elmts)
4 size_t si = foo.create_2d_sck_in<int>(t, "in", 8, 8);
5 // code to execute when the 'bar' task is called
6 foo.create_codelet(t, [si](Module &m, Task &tsk) {
7 // get a input 2D data pointer
8 const int** img =
9 tsk[si].get_2d_dataptr<const int>();

10 volatile int sum = 0;
11 for (size_t y = 0; y < 8; y++)
12 for (size_t x = 0; x < 8; x++)
13 sum += img[y][x];
14 return status_t::SUCCESS;
15 });

t1

t3

t2

t4

Knowledge Transfer
2 New Features

• Teaching MIPP
— Polytech Sorbonne Engineering School – 3rd year

◦ Électronique et Informatique – Systèmes Embarqués
— Sorbonne University – Master 2 SESI

◦ Systèmes Électroniques et Systèmes Informatiques

• Teaching AFF3CT
— Sorbonne University – SESI M2

◦ Motion detection and tracking on embedded systems

• Materials available online for the community
— https://lip6.fr/adrien.cassagne/#teaching

• New AFF3CT-core developer documentation
— https://aff3ct.github.io/aff3ct-core/

10/14

https://lip6.fr/adrien.cassagne/#teaching
https://aff3ct.github.io/aff3ct-core/

Knowledge Transfer
2 New Features

• Teaching MIPP
— Polytech Sorbonne Engineering School – 3rd year

◦ Électronique et Informatique – Systèmes Embarqués
— Sorbonne University – Master 2 SESI

◦ Systèmes Électroniques et Systèmes Informatiques

• Teaching AFF3CT
— Sorbonne University – SESI M2

◦ Motion detection and tracking on embedded systems

• Materials available online for the community
— https://lip6.fr/adrien.cassagne/#teaching

• New AFF3CT-core developer documentation
— https://aff3ct.github.io/aff3ct-core/

10/14

https://lip6.fr/adrien.cassagne/#teaching
https://aff3ct.github.io/aff3ct-core/

Knowledge Transfer
2 New Features

• Teaching MIPP
— Polytech Sorbonne Engineering School – 3rd year

◦ Électronique et Informatique – Systèmes Embarqués
— Sorbonne University – Master 2 SESI

◦ Systèmes Électroniques et Systèmes Informatiques

• Teaching AFF3CT
— Sorbonne University – SESI M2

◦ Motion detection and tracking on embedded systems

• Materials available online for the community
— https://lip6.fr/adrien.cassagne/#teaching

• New AFF3CT-core developer documentation
— https://aff3ct.github.io/aff3ct-core/

10/14

https://lip6.fr/adrien.cassagne/#teaching
https://aff3ct.github.io/aff3ct-core/

Knowledge Transfer
2 New Features

• Teaching MIPP
— Polytech Sorbonne Engineering School – 3rd year

◦ Électronique et Informatique – Systèmes Embarqués
— Sorbonne University – Master 2 SESI

◦ Systèmes Électroniques et Systèmes Informatiques

• Teaching AFF3CT
— Sorbonne University – SESI M2

◦ Motion detection and tracking on embedded systems

• Materials available online for the community
— https://lip6.fr/adrien.cassagne/#teaching

• New AFF3CT-core developer documentation
— https://aff3ct.github.io/aff3ct-core/

10/14

https://lip6.fr/adrien.cassagne/#teaching
https://aff3ct.github.io/aff3ct-core/

Table of Contents
3 Roadmap

▶ Introduction

▶ New Features

▶ Roadmap

▶ Conclusion

Job Offer & New Recruit
3 Roadmap

• Job offer: Inria-DGA convention
— Engineer or post-doc (18 months)

— Mission 1: Improve the DSEL for
high level languages

— Mission 2: Use to wrap
AFF3CT-core and to enrich the
library

• New Recruit: Maxime Millet
— PhD in computer science @ LIP6
— Low level optimizations for SoCs

◦ SIMD for embedded architectures
◦ Heterogeneous CPU/GPU implementations

— Optical flow and meteor detection

11/14

Job Offer & New Recruit
3 Roadmap

• Job offer: Inria-DGA convention
— Engineer or post-doc (18 months)

— Mission 1: Improve the DSEL for
high level languages

— Mission 2: Use to wrap
AFF3CT-core and to enrich the
library

• New Recruit: Maxime Millet
— PhD in computer science @ LIP6
— Low level optimizations for SoCs

◦ SIMD for embedded architectures
◦ Heterogeneous CPU/GPU implementations

— Optical flow and meteor detection

11/14

AFF3CT-core ×
3 Roadmap

• Benefit from AFF3CT-core in
— DSEL for streaming applications
— Multi-threaded runtime (pipeline &

replications)

• Benefit from in AFF3CT-core
— High level language with high

expressiveness
— Simple type templatization
— Just in Time compilation

◦ LLVM passes to simplify AFF3CT-core

• Study code vectorization in
— Compare explicit SIMD.jl versus MIPP
— Are there some limitations?

• Enrich AFF3CT library from code
written in

— Objective: Simplify the AFF3CT
contribution process

— Is it possible to use it in C++ and/or in
Python?

12/14

AFF3CT-core ×
3 Roadmap

• Benefit from AFF3CT-core in
— DSEL for streaming applications
— Multi-threaded runtime (pipeline &

replications)

• Benefit from in AFF3CT-core
— High level language with high

expressiveness
— Simple type templatization
— Just in Time compilation

◦ LLVM passes to simplify AFF3CT-core

• Study code vectorization in
— Compare explicit SIMD.jl versus MIPP
— Are there some limitations?

• Enrich AFF3CT library from code
written in

— Objective: Simplify the AFF3CT
contribution process

— Is it possible to use it in C++ and/or in
Python?

12/14

AFF3CT-core ×
3 Roadmap

• Benefit from AFF3CT-core in
— DSEL for streaming applications
— Multi-threaded runtime (pipeline &

replications)

• Benefit from in AFF3CT-core
— High level language with high

expressiveness
— Simple type templatization
— Just in Time compilation

◦ LLVM passes to simplify AFF3CT-core

• Study code vectorization in
— Compare explicit SIMD.jl versus MIPP
— Are there some limitations?

• Enrich AFF3CT library from code
written in

— Objective: Simplify the AFF3CT
contribution process

— Is it possible to use it in C++ and/or in
Python?

12/14

AFF3CT-core ×
3 Roadmap

• Benefit from AFF3CT-core in
— DSEL for streaming applications
— Multi-threaded runtime (pipeline &

replications)

• Benefit from in AFF3CT-core
— High level language with high

expressiveness
— Simple type templatization
— Just in Time compilation

◦ LLVM passes to simplify AFF3CT-core

• Study code vectorization in
— Compare explicit SIMD.jl versus MIPP
— Are there some limitations?

• Enrich AFF3CT library from code
written in

— Objective: Simplify the AFF3CT
contribution process

— Is it possible to use it in C++ and/or in
Python?

12/14

AFF3CT-core – Heterogeneous Tasks Support
3 Roadmap

“Nowadays, processor manufacturers are releasing heterogeneous SoCs. On a
same chip, we can find: energy efficient cores, performance cores, global

memory and application specific accelerators like GPUs & NPUs.”

• All these processing units share the global memory
— Take advantage of accelerators without extra copies
: New optimization opportunities for streaming

applications

• Add heterogeneous tasks support in AFF3CT-core
— Challenges: Enrich DSEL, memory allocations, scheduling
— Possible in : CUDA.jl, oneAPI, Apple GPUs
: Master 2 internship starting February’24

(co-supervised with Julien Sopena)

13/14

AFF3CT-core – Heterogeneous Tasks Support
3 Roadmap

“Nowadays, processor manufacturers are releasing heterogeneous SoCs. On a
same chip, we can find: energy efficient cores, performance cores, global

memory and application specific accelerators like GPUs & NPUs.”

• All these processing units share the global memory
— Take advantage of accelerators without extra copies
: New optimization opportunities for streaming

applications

• Add heterogeneous tasks support in AFF3CT-core
— Challenges: Enrich DSEL, memory allocations, scheduling
— Possible in : CUDA.jl, oneAPI, Apple GPUs
: Master 2 internship starting February’24

(co-supervised with Julien Sopena)

13/14

AFF3CT-core – Heterogeneous Tasks Support
3 Roadmap

“Nowadays, processor manufacturers are releasing heterogeneous SoCs. On a
same chip, we can find: energy efficient cores, performance cores, global

memory and application specific accelerators like GPUs & NPUs.”

• All these processing units share the global memory
— Take advantage of accelerators without extra copies
: New optimization opportunities for streaming

applications

• Add heterogeneous tasks support in AFF3CT-core
— Challenges: Enrich DSEL, memory allocations, scheduling
— Possible in : CUDA.jl, oneAPI, Apple GPUs
: Master 2 internship starting February’24

(co-supervised with Julien Sopena)
13/14

Table of Contents
4 Conclusion

▶ Introduction

▶ New Features

▶ Roadmap

▶ Conclusion

Final Words
4 Conclusion

• New features
— MIPP: Unsigned integers, SVE support, working on a generator
— AFF3CT-core: Forward sockets, control flow in pipeline stages

• Roadmap
— Wrap & enrich AFF3CT with language
— Heterogeneous tasks support in the runtime

14/14

Q&A
Thank you for listening!

Do you have any questions?

Bibliography
5 References

[1] A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Leroux, R. Tajan, O. Aumage, D. Barthou,
T. Tonnellier, V. Pignoly, B. Le Gal, and C. Jégo. “AFF3CT: A Fast Forward Error Correction
Toolbox!” In: Elsevier SoftwareX 10 (Oct. 2019), p. 100345. doi: 10.1016/j.softx.2019.100345.

[2] A. Cassagne, R. Tajan, O. Aumage, D. Barthou, C. Leroux, and C. Jégo. “A DSEL for High
Throughput and Low Latency Software-Defined Radio on Multicore CPUs”. In: Wiley Concurrency
and Computation: Practice and Experience (CCPE) 35.23 (July 2023), e7820. doi:
10.1002/cpe.7820.

[3] A. Cassagne, O. Aumage, D. Barthou, C. Leroux, and C. Jégo. “MIPP: A Portable C++ SIMD
Wrapper and its use for Error Correction Coding in 5G Standard”. In: Workshop on Programming
Models for SIMD/Vector Processing (WPMVP). Vösendorf/Wien, Austria: ACM, Feb. 2018. doi:
10.1145/3178433.3178435.

1/1

https://doi.org/10.1016/j.softx.2019.100345
https://doi.org/10.1002/cpe.7820
https://doi.org/10.1145/3178433.3178435

	Introduction
	New Features
	Roadmap
	Conclusion
	Appendix
	References

